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s By H. J. Cunningham
SUMMARY

The present analysis deals with the possibility that a sweptback
wing which is considered to have infinite torsional stiffness can still
flutter in bending only. The analysis is implicit in that of NACA Rep. 101k
and employs aerodynamic coefficients of two-dimensional incompressible
and compressible flow. The effects of wing mass-density ratio, angle of
sweepback, length-semichord ratio, and Mach number for pure-bending flut-
ter are studied. Flutter in bending alone is shown to be the limiting
case of bending-torsion flutter as the ratio of bending frequency to
torsional frequency approaches zero, provided that the wing is heavy
enough compared to its surrounding medium and its sweep parameter is
sufficiently large.

Calculations based on two-dimensional compressible-flow coefficients
for a normal-component Mach number of O.7 indicate that compressibility
has a much more marked effect on the speed of pure-bending flutter and
of closely related coupled flutter of swept wings than has been found in
previous work for coupled flutter of unswept wings. In the case of pure-
bending flutter, the bending frequency is all-important in setting the
flutter speed, and in the case of coupled flutter of a heavy, swept,
stubby wing with a low ratio of bending to torsional frequency, the bending
frequency agein has more influence on flutter speed than the torsional
frequency does.

Effects of finite span have not been considered but are expected
to be appreciable for low-aspect-ratio wings.

INTRODUCTION

It is possible that a sweptback wing which is considered to have
infinite torsional stiffness can still flutter. Flutter of such a wing
would occur in bending alone and is a limiting case of the more widely
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studied flutter involving both bending and torsion. Flutter in bending
alone has been referred to as single-degree bending flutter (and is at
times so designated hereinafter), although it should be recognized that
the motion may be given in terms of one or several bending degrees of
freedom or may be treated by a differential-equation approach which
would include all possible bending-mode combinations.

Although no actual airplane wing will ever have infinite torsional
stiffness, study of the bending-alone limiting case is of practical
interest since an analysis of bending-alone flutter is more quickly and
easily made than one for coupled flutter, and it is expected that param-
eters affecting the bending-alone-flutter speed have a similar qualita-
tive effect on the coupled-flutter speed over significant ranges of
those parsmeters. For example, study of the limiting case of bending-
alone flutter can point out ranges of parameters for which the speed of
the associgted coupled flutter is much more affected by wing bending
stiffness than by torsional stiffness.

The theoretical possibility of bending-alone flutter of a swept
wing has been noticed by investigators in England and Germany. In this
country the possibility was mentioned by Smilg in his study of oscil-
lations of an unswept wing in pitching alone; furthermore, it is implicit
in the analysis of reference 1. It is well to point out that pure-
pitching flutter of an unswept wing and pure-bending flutter of a swept
wing have an important point of similarity; namely, that wing sectlons
in the stream direction pivot about axes near or shead of the leading

edge.

The present psper is intended to give some features of flutter in
bending alone and contains results of analyses made to determine some
effects of wing mass-density ratio, angle of sweepback, length-semichord
ratio, and Mach number. Some relations of pure-bending flutter to the
conventional bending-torsion flutter are also given.

The analysis is made on the basis of assumed two-dimensional com-
pressible and Incompressible flow over wing sections as in reference 1.
Effects of aerodynamic mutual induction due to finite span or spanwise
~variation of deflection amplitude or both are expected to be appreciable
and it must be kept in mind that such corrections have not been included.
Moreover, before general conclusions can be made, effects of other degrees
of freedom, including body motions, should be investigated.
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SYMBOIS

part of complex coefficient of aerodynamic lifting force
on a wing sectlion which is oscillating harmonically in

bending in a two-dimensional stream (Rch + iIch)

complex coefficients of total lifting force and of total
moment in equations of equilibrium, defined following
equation (20b) of reference 1

semichord of wing measured normal to elastic axis
(Y'-axis; see fig. 1) :

semichord of wing at a reference station, feet

amplitude function of wing in bending

amplitude function oflwing in torsion

structural damping coefficient for bending vibration
structural damping coefficient for torsional vibration
generalized coordinate in bending degree of freedom, fget

(hoejﬂﬁﬁ where h, is a constant)

Imagingry part of Ach

reduced frequency, based on velocity component perpendi-
cular to elastic axis (m;,/vn

effective length of wing, measured along elastic axis, feet
mass of wing per unit length along Y'-axis, slugs per foot
stream Mach number

ratios involving Fh(n) defined following equation (6)

nondimensional radius of gyration of wing about elastic axis

(\’Ia/me, where Io 1s mass moment of inertia of wing

about its elastic axls per unit length in slug-feet2
per foot

e e ———— -
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effective or mean value of section mass-moment-of-inertias
parameter; see equation (5)

real part of A,

time, seconds
free-stream speed, feet per second

component of free-stream speed normal to elastic axis,
feet per second (v cos A)

distance of elastic axis behind leading edge, taken
perpendicular to elastic axis, percent chord

distance of center of gravity of wing section behind
leading edge, taken perpendicular to elastic axis,
percent chord

sweep parameter (tan.A)

1" /o,.
flutter determinant; see equation (3)

nondimensional coordinate along elastic axis; O at root,
1.0 at wing tip

generalized coordinate in torsional degree of freedom,
radians (Goeimt, where 6, is a constant)

ratio of mass of wing section to that of an equal-length
cylinder of air of diameter equal to wing chord (m/arpb2

effective or mean value of section mass ratio obtained by
integrating over length; see equation (%4)

angle of sweep of elastic axis, positive for sweepback,
degrees

density of medium surrounding wing, slugs per cubic foot

angular frequency of vibration, radians per second
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angular uncoupled bending frequency, radians per second

4

e

o angular uncoupled torsional frequency gbout elastic axis,
radians per second

ANATYTTCAT, INVESTIGATION

In an analysis of flutter of a cantilever swept wing, the shape of
the deflection mode must be taken into account. In the present analysis,
as in reference 1, the wing is considered in the following manner: Wing
sections are normal to an elastic axis (or locus of flexural centers)
which results from considering the wing to have an effective root as in
figure 1, and bending is considered to be the deflection of these wing
sections so that their displaced posltions are parallel to their
unstrained positions. ‘

Also involved in the problem are considerations of unsteady aero-
dynamic forces for wings of finite span. Unresolved complications arise
for low-length-chord-ratio wings when attempts are made to take into
account analytically effects of spanwise mutual induction which originate
in spanwise variation of deflection amplitude, in finite span, or in both.
Such analytical attempts, even for simple configurations, are exceedingly
complex and have been rather inconclusive in thelr agreement with experi-
mental results. The analysis of the present paper therefore is, for

- convenience and simplicity, the two-dimensional-flow approach of refer-
ence 1 which should be reasonably useful for wings of at least moderate
aspect ratio but may require appreciable correction for low aspect ratios.

In addition to calculations for -incompressible flow, an attempt
has been made to determine effects of compressibility by substituting
aerodynamic coefficients for two-dimensional compressible flow (for
example, as from references 2 and 3) according to the Mach number of the
subsonic flow component normal to the leading edge. That 1s, for each
wing sectlion serodynamic coefficients for M = O are replaced by those
for the normal-component Mach number M cos A.

The expectation ie that primary effects of wing parameters and
compressibility will be predicted and that, as a result, areas where
additional efforts should be expended will be delineated.

The succeeding sections are intended to provide insight into the
phenomenon of pure-bending flutter by: (1) examining a sequence of
results of calculations for bending-torsion flutter, (2) determining
the conditions under which bending-torsion flutter contains pure-bending
flutter and then showing that pure-bending flutter is, in general, the
limit of bending-torsion flutter as the frequency ratio whﬁma approaches
zero under those conditions, (3) investigating effects of some signifi-
cant parameters on pure-bending flutter, and (4) giving some sample
quantitative relations of pure-bending to bending-torsion flutter.
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Bending-Torsion Flutter of a Swept Wing

Method of solution.- The flutter of a nonuniform swept wing in two
degrees of freedom, one bending and one torsion, is treated as in ref-
erence 1. The two equations of equilibrium (from reference 1) are as
follows:

(EAE +_QB2)ﬂpbr3m2 =0 (1)

(1pp + 6mp Jpbe? = 0 (2)

The quantities A, Bp, Dy, and E, (defined subsequent to equation (20b)
of reference 1) depend in part on the unknown reduced frequency k, and
on the unknown flutter frequency . Real combinations of k, end ®

which cause the determinant of coefficients to wvanish
A = =0 (3)

are characteristic values and define the condition of flutter.

Some typical qualitative results of flutter speed.- For the purpose
of gaining some insight into the case of pure-bending flutter, a sequence
of curves of bending-torsion-flutter speed obtained by varying certain
parameters 1s of interest. Figure 2 presents such a sequence, in pro-
gressive order from figure 2(a) to figure 2(d), of interrelated pairs

of curves of flutter-speed coefficients v/bw, and v/twy as functions

of wing frequency ratio /oy (that is, —— =‘;E_.fh)_ These curves

oy @y,
are intended to show only qualitative results and they cover a fairly
wide range of classes of swept cantilever wings.

Two relevant wing parasmeters that can bring about the progressive
changes from figure 2(a) to figure 2(d) are: (1) a sweep parameter 7
defined by the sweep angle and length-semichord ratio as

- tan A
t'/by
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and (2) a mass parameter l/ne which is an integrated mean value,
based on energy considerations, of the section mass-density ratio and

is defined as
1 e 2
b 1[F| ( ]
=) ZFp(n)| a
J; (br) kLR k

IRCIZEE

where Fh(n) is the amplitude function or shape of the bending mode.

Since the mass parameter represents a ratio of wing mass to air mass, -
it can also give effects of altitude.

1 _
ne"

(&)

The flutter-speed coefficients v/bw, and v/bw, as functions
of wy/wy can change from those of figure 2(a) to those of figure 2(d)
provided that: (1) 1/ke is sufficiently large and 7 progresses from
a small value (fig. 2(a)), through an intermediate value (fig. 2(b)),

through a trensitional value (fig. 2(c)), to a larger-than-transitional
value (fig. 2(d)); or (2) 7 is sufficiently large and 1l/ke increases

from a small value (fig. 2(a)), through an intermediate value (fig. 2(b)),
through a transitional value (fig. 2(c)), to a larger-than-transitional
value (fig. 2(d)). The values of 7 and 1/k, which give curves as
in figure 2(c) (v/bw, has infinite slope at the origin) are designated

transitional values and have the significance that they are crucial or
borderline values separating a region in which a swept cantilever wing
considered infinitely stiff in torsion cannot flutter and a region in
which such a wing can flutter. In figure 2 only the shapes of the
curves, particularly for small values of wy/w,, are of immediate inter-

est, and the curves have no quantitative significance.

A feature of the curves of v/bwy of figure 2 to be pointed out
i1s that in Pigure 2(a) torsional frequency gy has the predominant
positive influence on v for values of wh/0y less than unity but that
bending.frequency @, has a predominant influence on v for portions

' of the curves of figures 2(b), 2(c), and 2(d) at small values of coh/cna.

This feature is brought out as follows: Any incremental segment of the
curves of v/bu)a of figure 2 can be represented approximately by its
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tangent given by

3£; =m -+ mp 25
or

v
7 = TPy T moy

where oy and. m, are constants. WMost of the experience to date with

bending-torsion flutter has led generally to curves of V/‘tma of the

type in figure 2(a), especially with regard to the feature that, for
small values of /o, the slope of the curve is small; that is, my

is large compared to m,. Consequently, torsional frequency wy has
a much greater influence on flutter speed than ay, does, hence the

usual torsional-stiffness criterion for prevention of bending-torsion
flutter.

With a curve of v/bw, as shown in figure 2(b) (as well as in
figs. 2(c) and 2(d)) a portion of the curve with large slope at a small
value of /o, (m; small compared to m,) delineates a reglon where
bending frequency ), has more influence on flutter speed than w,

does. Thus, flutter speed v can be more influenced by bending fre-
quency @y than by torsional frequency oy, even for lower-than-

transitional values of 1/k, and 7 (fig. 2(b)) as well as for larger
values (figs. 2(c) and 2(d))- -
The succeeding sections verify that the condition for bending-alone

flutter is at a 1limit of the condition for coupled bending-torsion flutter
(under certain provisions to be discussed) and effects of some parameters

are evalusted.

Bending Flutter as a Limit of Bending-Torsion Flutter

If single-degree bending flutter does exist, the torsional ampli-
tude 6 must be zero in equation (1); it then follows that the complex

coefficient Ap must be zero. In order that equation (3) also be
satisfied, the coefficient E, must be infinite such that AsEs = BoDp,
since Bo and Dy are in general finite. Each of the coefficients Ao
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and E2' consist of an inertia and elastic part and an aerodynamic part.
The inertia and elastic part of A, is

20w
(r—g%) 1- (a-:-b"-")e (1 + ig,)

The mass parameter 1/k, is defined by equation (4) end, similarly, the

mass-moment-of-inertia parameter (rme ) is an integrated mean value

K
defined as follows: © '
b 4 r o 2
o
(ra2> j;(b—r) —;—[Fe(n)] an
K e M L o -
| 0 ("%) Ee("ﬂ o

where rq?n 1s a sectlon property.

(5)

The coefficient E, can be infinite only if wg/® is infinite

for a wing of finite (ra?/ n) . The quantity oy/w can be infinite if:

e
(a) @y is infinite and o is finite or (b) @, is finite and ®
is zero. The coefficient A, can be zero only if wp/w is not infinite
for a wing of finite 1/kg. Thus, under condition (a) @, must be
finite since ® is finite, and under condition (b) wp must be zero
since ® 1s zero. Examination of possible values of ) and g
reveals that under both conditions (a) and (b)- the frequency ratio wp /g

is zero. The conclusion is thereby reached that the condition for
coupled flutter (equation (3)) can contain the condition Ap =0 for

pure-bending flutter only if wh/cna is zero. This is a necessary but

not a sufficient condition and the further requirement exists that
with A, = O ‘the solution for wp/w be real and positive.

It was found from a study of the aerodynamic part of. Ap that
coh/a) is positive and real if 1/x, and the sweep parameter 7 are
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larger than certain interdependent minimum values, which turn out to be
the transitional values discussed in the previous section. These transi-
tional values give curves of flutter-speed coefficient as in figure 2(c),
while larger-than-transitional values give curves as in figure 2(4d).

Another facet of pure-bending flutter to be brought out is that the
frequency ratio ‘Dh/‘ba, can be zero in two ways, as might be deduced
from the two conditions (a) and (b) just given; namely, for condition
(a) ®, is finite and o  infinite, and for condition (b) w, is zero
and ®, finite and greater than zero. The second possibility would

seem more easily approached than the first in an experimental program
on pure-bending flutter through the use of a bending hinge at the wing
root restrained by a vanishingly weak spring.

Application to a Uniform Wing

Determinagtion of transitional wvalues.- For the purpose of simplicity
of example, a uniform cantilever sweptback wing, the root of which is
considered to behave structurally as shown in figure 1, is treated. The
coefficient A, 1s set equal to zero and real solutions of v and ®

represent flutter in bending alone. The result of setting A2 of
reference 1 equal to zero and multiplying by a convenient constant is

[ - (@ igh)]% - Aen + M7 () (L + Aay) - WP L5 =0 (6)

kna
where
1
f Fp(n) I dn
_Jo dn
1 2
f [Fh(n)] dn
0
and

1 a°Fy
o Fp(n) —5 dn

dn

f [Fh( i )] dn
0
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If the bending-mode shape Fp(n) is chosen as that of an ideal uniform
cantilever beam 'in first bending, Nl is 2.0000 and N2 is 0.85837.

Since equation (6) is complex, it can be divided into two equations
as follows:

Equation of imaginaries (damping-force coefficients)

. \
%@,F) g, * Iep - N17'(-l + Rcb)il; =0 (7)

Equation of reals (inphase-force coefficients)

g
1
'El:1 - (%‘)] ’Rch’Nl7']kl;Ich‘N272 "‘zki=° (8)

Consider first the condition of zero structural damping (gh = 0) .
For any chosen velue of X, and the associated values of Rgy and Ich,

2
solutions can be made for 7 and %E - (%) :l . Figure 3 gives

2
%IE. - (%) :] for g =0 (plotted on a log scale) as a function of ¥

for incompressible flow and for the compressible flow M cos A = 0.7.
Values of l/kn are indicated on each curve. All values of k, which

result in positive values of 7 (indicating sweepback) also result in

o
positive values for %[1 - (%) ] This circumstance, together with the

physical conditions that 1/rce and u.»h/a) are positive and real,
requires @p/w +to fall in the range O € @wn/w < 1.0. Then, for any
value of ®p/® between 0 and 1.0, 1/k must always be greater than the

2
value of %l: - (%1):] . It follows therefore that, for a given value

2
of 7, the ordinate %[1 - (‘%‘-) ] of figure 3 may be considered.the

smallest value of l/ k which can be had and still allow single-degree
bending flutter of a uniform wing to occur; the limiting value of 1/k

18 actually associated with the condition % = 0. Of course the abscissa -
in figure 3 defines the lowest value of 7 Just as the ordinate defines
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the lowest value of 1/k and these are the transitional values which
lead to curves of flutter-speed coefficient v/bma as in figure 2(c),
discussed in a previous sectlon. Thus, even though whﬁmm is zero, the
condition must be satisfied thet 1/k and 7 for a uniform wing fall
on or sbove the curves of filgure 3 to enable flutter in bending alone.
Figure 3 shows that the particular compressible flow M cos A = 0.7 is
predicted to have a very strong relieving effect on the requirements

on l/n and 7y for single~degree bending flutter. Both parameters can
have much lower values than in incompressible flow.

For the condition of structural damping not zero, numerical solution
is somewhat more involved. The transitional values of l/n and 7 are
unaffected by the value of g, however, since for these transitional

values whﬁn is zero and thus the first term of equation (7) is zero.

Bffect of some parameters on bending-alone flutter.- The results
of figure 3 can be translated into various forms; for example, instead
of 7 for an abscissa, a specific value of 1'/b can be chosen, and
the angle of sweep A can be utilized as the gbscissa. Such a trans-

formation results in the curves of figure 4 for %} = 6. The ordinate

of figure 4 is identical to that of figure 3 and the curves show again
that the particular compressible flow M cos A = 0.7 theoretically
greatly decreases the required minimum (transitional) values of 1/k
and 7 from those of incompressible flow.

Figure 5 gives results of flutter-speed coefficient v/bwy as a
function of angle of sweepback A for three values of structural damping

1
coefficient g, and for the specific parameters %; =6 and % = 1000.

. The theoretical flutter-speed coefficient is greatly reduced in the com-
pressible flow M cos A = 0.7 from that of incompressible flow M = O,
For example, at 60° sweep and g, of 0, the value of v/bwy, is pre-
dicted to be 15.4 for the compressible flow and 51 for incompressible
flow. This fact means that a value of bwy for the compressible flow
is required to be 331 percent of that for incompressible flow in order

. that the two absolute flutter speeds be equal.

The curves of figure 5 also predict that for the particular param-
eters involved, small values of structural damping coefficient have a
large effect on the flubtter-speed coefficient. For instance, in incom-

pressible flow fo?‘a sweepback angle of 600, an increase of g, from O
to 0.03 iIncreases v/bmh by 85 percent. It was found that for lower
values of 1/k, g, does not have such a marked effect. The values of
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sweep angle to which the two sets of curves of figure 5 are asymptatic
are the values of A of figure 4 for an ordinate of 1000.

Figure 6 presents flutter-speed coefficients as a function of
length-semichord ratio for gy = 0, % = 1000, and sweep angle of 60°.

The curves of figure 5 for g, = 0 and those of figure 6 can be con-
sidered part of a three-dimensional plot with mutually perpendicular

coordinates of sweep angle, length-semichord ratio, and flutter-speed
coefficlent where the curves of the two figures have a Juncture at

A= 60° and %% = 6. As might be expected after noting figures 3, U4,

and 5, the compressible flow M cos A= 0.7 is seen in figure 6 to have
a strong detrimental effect compared to incompressible flow.

The surprising feature of figure 6 is that as Z'/b decreases, the
flutter-speed coefficient is predicted to decrease. (If‘ b 1is held
constant and 1" reduced, flutter speed v 1itself will increase,

however, since Wy, 1is approximately inversely proportional to 2'2.)

This result 1s in contrast to that for coupled flutter of unswept wings
where a decrease in aspect ratio has led generally to an increase in
flutter-speed coefficient. The effect given in figure 6 is based on
two-dimensional flow and the actual behavior of flutter-speed coefficient
for heavy swept wings as Z'/b decreases may be a compromise between

the predicted veriation shown in the figure and the increase found for
unswept wings in three-dimensional flow.

Quantitative relation of pure-bending to bending-torsion flutter.-
Quantitative relations of flutter speed, frequency, and other character-
istics can be obtained through solution of the flutter determinant
(equation (3)) as the bending-torsion frequency ratio is considered to
increase from its zero limit Qum decreases from an infinite value for
finite values of wh). The flutter departs from its pure-bending limit

and becomes of a coupled type. For the present examples only two modes,
first bending and first torsion, are included.

The point in figure 5 for incompressible flow, g, = 0, and A = 60°
has been chosen and mhﬁma varied from O to gbout 1l.1. The results of
Tlutter-speed coefficients: v/bmh. and. v/bma as well as frequency
ratio /ey as functions of wp/w, are shown in figure 7. Qualitative
similarity of the curves of v/bwy and v/bw, to those of figure 2(d)
can be noticed. It is observed that a decrease of w, from an infinite

value to a value five times ay (g;% = 0.2) effects a decrease in v/bmh
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of only about 22 percent. Thus, in the range 0 < (U%:i £ 0.2 torsional

rigidity, represented by ., theoretically has a relatively small
effect on the flutter speed for the wing parameters of figure 7. The
ratio o.)/wh of flutter frequency to bending frequency is seen to

©n

decrease from about 1.3 at % = 0 to sboutunity for = = 1.0.
‘ o

Another example of the effect of finite w, is shown in figure 8

which applies to a different set of wing parameters both in incompres-
sible flow and in the compressible flow M cos A = 0.7. The signifi-
cantly differing wing parameter is the mass ratio 1/ K, which has

a value of 112. Such a wing is lighter or is at a lower altitude than

is the wing of figures 5 and 6, which has i = 1000. The sweep parem-

eter for the case in figure 8 is 0.2. It is apparent from the curve for
the compressible flow in the region of wh/“)or, between O and about 0.03

that a decrease of ®, from infinity has little effect on the predicted
flutter-speed coefficient, but a further decrease of w, has a somewhat

greater effect. Solutlion for incompressible flow does not predict a
bending-alone flutter for ‘Dh/‘na, of zero since 1/k of 112 falls below

t
the minimum required value for 7y of 0.2 (A = us°, -Z-b- = 5) shown in
figure 3, and both v/bw, end o/m, approach infinite values as ay/my
approaches- zero. The results of figure 8 predict that the compressible

flow dealt with has a marked detrimental effect on flubter-speed coeffi-
clent for small values of “’h/“)a, For a value of u.\h/a)@ of 0.2, for

exemple, v/bwy, in the compressible flow M cos A= 0.7 is only

53 percent of that for incompressible flow. It follows that, in order
for borderline flutter to occur at the same absolute speeds in incom-
pressible and in the compressible flow, the wing stiffness in terms

of bwy, must be 188 percent as great in the compressible flow as in

incompressible flow.

For this swept-wing example as well as in the other figures, the
compressibility (Mach number) effect was found to be greater than has
_.been found for unswept wings in previous work. It is reemphasized that
the present results are based on two-dimensional flow and that finite

span is expected to have an gpprecisble effect.
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DISCUSSION

The over-all findings of the present analysis seem to indicate that
calculations of single-degree bending flutter, based on coefficients for
two-dimensional incompressible flow, are of interest at least as a theo-
retical limiting condition. Such calculations predict that a wing, in
order to flutter in single-degree bending, must possess a combination of
very large mass-density ratio 1/k and large sweep parameter as well as
satisfy the condition of zero frequency ratio w,/wy. This specified
combination of parameters conceivably could be approached by a highly
swept, stubby wing, which is very stiff in torsion and which carries a
heavy fuel tank on its tip. As a result bending frequency ay, could

be more influentlial on the flutter speed than torsional frequency .

A simplified attempt to approximste some effect of compressibllity
for a particular compressible flow, M cos A = 0.7, resulted in more
serious predictions. It 1s predicted that compressibility has a strik-
ingly unfavorable effect both on single-degree flutter (frequency
ratio mhﬁnm of zero) and on related coupled flutter (frequency ratio

not zero) of a heavy sweptback wing with low length-semichord ratio.

The use of aerodynamic coefficlents for two-dimensional compressible
flow may result in overestimation of effects of compressibility on the
flutter of sweptback wings. Compressibility may, however, have a greater
effect on a low-length-semichord-ratio swept wing than on a low-aspect-
ratio unswept wing. It rémains for experimental investigation to give
effects of three-dimensional compressible flow.

CONCLUSIONS

The possibility of flutter in bending alone is examined. The .
analysis 1s essentially that given in NACA Rep. 101k and employs aero-
dynamic coefficlents of two-dimensional Incompressible and compressible
Tlow. As a result of the apalysls and application to uniform wings, the
following conclusions are made:

1. A cantilever sweptback wing will theoretically flutter in bending
alone 1n potential flow even though it is infinitely stiff in torsion 1if
it is heavy enough relative to the surrounding medium and has a suffi-
clently large sweep parameter.

2. Flutter in bending alone is a limiting case of the better-known
coupled flutter as the bending-torsion frequency ratio approaches zero
under the two conditions stated in the first conclusion.
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3. Computations based on two-dimensional compressible-flow coeffi-
cients for the normal-component Mach number of 0.7 indicate that com-
pressibility has a marked detrimental effect on bending-alone flutter
of a heavy sweptback wing of low length-semichord ratio, first in that
the conditions on mass retdo and sweep parameter are greatly relaxed,
and second, that a wing is required to have considerebly higher bending
frequency to prevent flutter in the compressible flow than in incompress-

ible flow.

4., Bven though a heavy wing of high sweep parameter does not satisfy
the condition of zero bending-torsion frequency ratio, if that ratio i1s
low, coupled-flutter speed may depend more on wing bending than on tor-
sional frequency. Furthermore, the effect of compressibility on the
coupled flutter of such a sweptback wing may be considerably greateér
than has been found for low-aspect-ratio unswept wings.

5. Effects of finite span have not been considered but are expected
10 be appreciable for low-aspect-ratio wings. .

Langley Aeronautical Leboratory .
National Advisory Committee .for Aeronautics
Langley Field, Va., June 19, 1951
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